報告承辦單位:數學與統計學院
報告內容: Fighting malaria by a bacterium: modelling the potential role of engineered symbiotic bacteria in malaria control
報告人姓名:Xingfu Zou(鄒幸福)
報告人所在單位: 加拿大西安大略大學
報告人職稱/職務及學術頭銜: 教授,博導
報告時間: 2019年7月10日 周三上午10:30
報告地點: 理科樓A419
報告人簡介: 鄒幸福教授于1983年和1989年在中山大學數學系和湖南大學數學系分別獲學士和碩士學位。1996年在加拿大約克大學博士畢業并獲理學博士學位之后分別在加拿大維多利亞大學和美國喬治亞理工學院動力系統與非線性研究中心做博士后。1999年1月至2004年1月在加拿大紐芬蘭紀念大學先后教授教授(終身教職),自2004年開始在加拿大西安大略大學應用數學系教授(終身教職),2012年入選湖南省百人計劃專家并在中南大學擔教授, 在泛函微分方程與應用動力系統研究領域取得了一系列有影響的創新成果在J.Dif.Eqns. SIAM J.Appl.Math., SIAM J.Math.Anal.等著名雜志發表有影響的研究論文一百多篇,擔任Applicable Analysis, Journal of Computational and Applied Mathematics, Communications on Pure and Applied Analysis等SCI收錄雜志的編委, 曾獲加拿大國家自然科學和工博土后獎, Petro-Canada青年研究創新獎, 安大略省長杰出研究獎。
報告摘要:Recent experimental study suggests that the engineered symbiotic bacteria Serratia AS1 may provide a novel, effective and sustainable biocontrol of malaria. These recombinant bacteria have been shown to be able to rapidly disseminate throughout mosquito populations and to efficiently inhibit development of malaria parasites in mosquitoes in controlled laboratory experiments. In this talk, I will present a climate-based malaria model which involves both vertical and horizontal transmissions of the engineered Serratia AS1 bacteria in mosquito population. Our analysis shows that the dynamics of the model system is totally determined by the vector reproduction ratio Rv and the basic reproduction ratio R0. If Rv <1, then the mosquito-free state is globally attractive. If Rv>1 and R_0 < 1, then the disease-free periodic solution is globally attractive. If Rv>1 and R0>1, then the positive periodic solution is globally attractive. I will also present some numerical simulation results by using some dada available for Duoala in Cameroon, which not only confirm the obtained analytic results but also help evaluate the effects of releasing the engineered Serratia AS1 bacteria in field in this place of Africa.