長沙理工大學學術活動預告
報告承辦單位:數學與統計學院
報告內容: Medical Applications of Improved Super Asymmetric Support Vector Machine
Recently deep learning algorithms have achieved great success in the field of computer vision. The popularization of artificial intelligence based on deep learning in various fields requires a large number of manually labeled data. However, in medical field, it is really expensive and difficult to gather massive accurate annotations labeled by experts with rich clinical experience. This talk introduces a method called Super Asymmetric Support Vector Machine (SASVM) to solve the problem of poor accuracy and consistency of medical data. In this method, positive examples are augmented with some non-classical data whose annotations may be insufficient or inconsistent. Furthermore, the methodology could be applied to multi-instances learning.
報告人姓名: 李明
報告人所在單位:太原理工大學
報告人職稱/職務及學術頭銜:教授
報告時間: 2019年12月28日15:00-16:00
報告地點:理科樓A-419
報告人簡介: 李明,教授,博士生導師,2010年畢業于香港城市大學,獲博士學位。現任太原理工大學黨委常委、副校長。山西省高等學校優秀青年學術帶頭人、山西省優秀科技工作者、山西省131領軍人才、山西省青年拔尖人才。擔任國際SCI期刊International Journal of Computational Method編委,山西省工業與應用數學學會副理事長。長期致力于計算數學、無網格計算方法和醫療大數據等研究。已發表SCI論文70余篇,出版英文專著1部。主持國家自然科學基金項目3項,中國-斯洛文尼亞政府間科技合作項目1項、省部級項目7項、教改項目1項。