免费A级毛片在线播放不收费,国产麻豆剧传媒精品国产av,最近最好的2019中文,最好看免费观看高清电影大全

學術動態

數統學院系列學術活動預告
2020年10月30日 | 點擊次數:

長沙理工大學學術活動預告

報告承辦單位: 數學與統計學院

報告題目 On the time-domain acoustic waves reflected by a cluster of small sound-soft obstacles

報告內容 

Consider the time-domain acoustic scattering problem by a cluster of small sound-soft obstacles. Based on the retarded boundary integral equation method, we derive the asymptotic expansion of the scattered field as the size of the holes goes to zero. Under certain geometrical constraints on the size and the minimum distance of the holes, we show that the scattered field is approximated by a linear combination of point-sources where the weights are given by the capacitance of each hole and the causal signals (of these point-sources) can be computed by solving a, retarded in time, linear algebraic system. A rigorous justification of the asymptotic expansion and the unique solvability of the linear algebraic system are shown under natural conditions on the cluster of holes. As an application of the asymptotic expansion, we derive, in the limit case when the holes are densely distributed and occupy a bounded domain, the equivalent effective acoustic medium (an equivalent mass density characterized by the capacitance of the holes) that generates, approximately, the same scattered field as the cluster of holes. Finally, we numerically verify the asymptotic expansions by comparing the asymptotic approximations with the numerical solutions of the scattered fields via the finite element method. 

報告人姓名:  王海兵

報告人所在單位: 東南大學數學學院

報告人職稱/職務及學術頭銜:  教授

報告時間:  2020103111:40-12:20

報告方式: 理科樓A-419 

報告人簡介:  王海兵,男,教授,博士研究生導師,主要從事數學物理反問題的研究。2012年獲得北海道大學和東南大學的理學博士學位,2014年獲得江蘇省優秀博士學位論文,2016年入選江蘇高校青藍工程中青年學術帶頭人培養對象,2017年作為第二完成人獲得教育部自然科學二等獎,2018年獲得江蘇省工業與應用數學學會第二屆工業與應用數學獎青年獎。現任中國數學會計算數學分會常務委員。主持三項國家自然科學基金和一項江蘇省自然科學基金,在SIAP, SIAM-MMS, IP, JCP等國內外刊物上發表三十余篇學術論文,多次訪問東京大學、北海道大學、仁荷大學和奧地利科學院RICAM,受邀在國際學術會議上作報告十余次。

 

報告承辦單位: 數學與統計學院

報告題目:  Inverse source problems with a single far-field data

報告內容 

We show that a polygonal source term can be uniquely determined by the far-field pattern at a fixed frequency, provided the source function belongs to an admissible set of analytic functions. Moreover, a class of radiating sources embedded in an inhomogeneous medium will be characterized. Finally, source terms whose support contains an arbitrarily weakly singular point will be discussed.    

報告人姓名:  胡廣輝

報告人所在單位: 南開大學數學科學學院

報告人職稱/職務及學術頭銜:    特聘研究員

報告時間:  2020103114:0014:40

報告方式: 理科樓 A-419

報告人簡介: 胡廣輝,現任南開大學數學科學學院科學工程與計算系特聘研究員。2009年獲中國科學院數學與系統科學研究院博士學位。2009至2016在德國萊布尼茨協會維爾斯特拉斯研究所做博士后工作,在2012至2015獨立主持德國研究協會科研項目一項。2016年3月份入選國家海外高層次青年人才計劃,2016.09-2020.05就職于北京計算科學研究中心.胡廣輝博士主要從事波動方程的數學理論研究偏微分方程反問題及計算方法的研究目前已發表論文60余篇 

 

報告承辦單位: 數學與統計學院

報告題目:  Inversion analysis for magnetic resonance elastography

報告內容 

A diagnosing modality called MRE (Magnetic Resonance Elastography) whose hardware consists of a MRI and vibration system can measure the displacement vector of a shear wave inside a human tissue. The so called elastogram of MRE is to recover viscoelasticity of human tissue from the {\it MRE measured data}. This is an inverse problem with single interior measurement. The importance of MRE is that it can realize doctors' palpation inside a human body which had been dreamed by doctors for a long time. Although the hardware of MRE is developing very quickly, the elastogram has not yet developed enough and there are so many challenging questions for elastogram. I will introduce the fundamental principal and mathematical model of MRE in the talk. Some inversion sheme to recover the unknown viscoelastic coefficients will also be present. This is a joint work with Prof. Gen Nakamura in Hokkaido University, Japan.

 

報告人姓名:  江渝

報告人所在單位: 上海財經大學數學學院

報告人職稱/職務及學術頭銜:    副教授、院長助理。日本北海道大學博士畢業、中國數學會計算數學分會第十屆委員

報告時間:  2020103114:4015:20

報告方式: 理科樓A-419 

報告人簡介:  江渝博士2009年獲日本北海道大學理學博士。長期從事醫學成像相關反問題方面的研究。特別是對超聲波彈性成像法、核磁共振彈性成像法和光 CT 成像軟硬件方面的各種問題點和數值反演解法有比較全面的了解。在日本北海道大學攻讀博士期間就獲日本學術振興會 2 年關于 MRE 反問題研究的基金資助,并在獲得博士畢業后順利結題。之后參加了日本科學技術振興機構資助的 3 年重大項目,主要就是對Micro-MRE 系統的開發,承擔了反演軟件和 MRE 成像序列的開發,相關成果獲得日本專利一項(日本專利號:P5773171,國際專利號:W02012/026543.)。通過對實測數據的分析來反演建模,利用有限元的方法實現了數值模擬,同時也驗證了設定模型的正確性。在反演技術上,提出了多種數值反演算法。其數值結果和通過和其他基準測試方法得到的數據對比,達到了很高的精度,在日本和國際上得到公認。現作為主要參與者參與國家自然科學基金面上項目1項,曾主持完成青年科學基金項目1項,參與青年項目1項,天元項目1項。目前已在《Inverse Problems》等期刊發表論文29篇,出版專(譯)著2部,多次受邀訪問東京大學、北海道大學進行學術交流,參加本專業大型國際會議并作報告。

 

報告承辦單位: 數學與統計學院

報告題目:Adaptive Surrogate Modeling Based on Deep Neural Networks for Bayesian Inverse Problems

報告內容 

In Bayesian inverse problems, surrogate models are often constructed to speed up the computational procedure, as the parameter-to-data map can be very expensive to evaluate. However, due to the curse of dimensionality and the nonlinear concentration of the posterior, traditional surrogate approaches are still not feasible for large scale problems. In this talk, we present an adaptive multi-fidelity surrogate modeling framework based on deep neural networks (DNN). More precisely, we first construct offline a DNN-based surrogate according to the prior distribution, and then, this prior-based surrogate will be adaptively refined online using only a few high-fidelity simulations. In particular, in the refine procedure, we construct a new shallow neural network that view the previous constructed surrogate as an input variable – yielding a composite multi-fidelity neural network approach. This makes the online computational procedure rather efficient. Numerical examples are presented to confirm that the proposed approach can obtain accurate posterior information with a limited number of forward simulations.

報告人姓名:  閆亮

報告人所在單位: 東南大學數學學院

報告人職稱/職務及學術頭銜:    副教授

報告時間:  2020年10月3111:00-11:40

報告方式: 理科樓A-419 

報告人簡介:  閆亮,副教授、博士生導師,2011年畢業于蘭州大學數學與統計學院。主要從事不確定性量化、貝葉斯反問題理論與算法的研究。2018年入選東南大學“至善青年學者”(A層次)支持計劃,2017年入選江蘇省高校“青藍工程”優秀青年骨干教師培養對象。目前主持國家自然科學基金面上項目一項,主持完成國家自然科學基金青年項目和江蘇省自然科學基金青年項目各一項。已經在《SIAM J. Sci. Comput.》、《Inverse Problems》、《J. Comput. Phys.》等國內外刊物上發表20多篇學術論文. 

 

 

 

 

 

  • <samp id="20me8"></samp>
    <fieldset id="20me8"><var id="20me8"></var></fieldset>