報告承辦單位: 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
報告題目: A numerical scheme for the time-fractional diffusion equation by layer potentials with applications to inverse problems
報告內(nèi)容: In this talk, we show a numerical scheme for solving an initial-boundary value problem for the time-fractional diffusion equation. By expressing the solution as a single-layer potential, the initial-boundary value problem is transformed into a boundary integral equation for the unknown density function. To numerically solving the resulting boundary integral equation, we develop a stable discretization scheme for layer potentials. First, we rewrite the layer potential operators as generalized Abel integral operators in time. Then, the asymptotic expansions of those kernels at the initial time are derived. Consequently, we establish a stable time discretization scheme. The spatial discretization is performed by a standard quadrature rule for boundary integrals of smooth functions. Finally, we present several numerical examples to show the efficiency and accuracy of the proposed numerical scheme. Applications to inverse problems will also be discussed.
報告人姓名: 王海兵
報告人所在單位: 東南大學(xué)數(shù)學(xué)學(xué)院
報告人職稱/職務(wù)及學(xué)術(shù)頭銜: 教授
報告時間: 2021年12月04日11:00-11:40
報告地點(diǎn): 卡斯迪漫享酒店二樓VIP會議廳
報告人簡介: 王海兵,男,教授,博士研究生導(dǎo)師,主要從事數(shù)學(xué)物理反問題的研究。2012年獲得北海道大學(xué)和東南大學(xué)的理學(xué)博士學(xué)位,2014年獲得江蘇省優(yōu)秀博士學(xué)位論文,2016年入選江蘇高校“青藍(lán)工程”中青年學(xué)術(shù)帶頭人培養(yǎng)對象,2017年作為第二完成人獲得教育部自然科學(xué)二等獎,2018年獲得江蘇省工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會第二屆“工業(yè)與應(yīng)用數(shù)學(xué)獎青年獎”。現(xiàn)任中國數(shù)學(xué)會計(jì)算數(shù)學(xué)分會常務(wù)委員。主持三項(xiàng)國家自然科學(xué)基金和一項(xiàng)江蘇省自然科學(xué)基金,在SIAP, SIAM-MMS, IP, JCP等國內(nèi)外刊物上發(fā)表三十余篇學(xué)術(shù)論文,多次訪問東京大學(xué)、北海道大學(xué)、仁荷大學(xué)和奧地利科學(xué)院RICAM,受邀在國際學(xué)術(shù)會議上作報告十余次。